(8+8+8 pls) 1. Evaluate each of the following limits if it exists.

(a) \(\lim_{x \to -\infty} \left(x + \sqrt{x^2 - x - 4} \right) = \lim_{x \to -\infty} \frac{\left(x + \sqrt{x^2 - x - 4} \right) \left(x - \sqrt{x^2 - x - 4} \right)}{x - \sqrt{x^2 - x - 4}} \)

\[= \lim_{x \to -\infty} \frac{x + 4}{x - \sqrt{x^2 - x - 4}} \]

\[= \lim_{x \to -\infty} \frac{x + 4}{x + x \sqrt{x^2 - x - 4}} \]

\[= \lim_{x \to -\infty} \frac{1 + \frac{4}{x}}{1 + \frac{\sqrt{x^2 - x - 4}}{x}} \]

\[= \frac{1}{2} \]

(b) \(\lim_{x \to 0} x \sin(x) = 0 \)

Note that \(\lim_{x \to 0} x = 0 \) and \(\lim_{x \to 0} \sin(x) = 0 \), and hence

\[\lim_{x \to 0} (x \sin(x)) = \lim_{x \to 0} x \cdot \lim_{x \to 0} \sin(x) = 0 \]

Both limits exist.

(c) \(\lim_{x \to 0} \frac{x^2 \sin \left(\frac{1}{x} \right)}{\sin(x)} \)

\[= \lim_{x \to 0} \frac{x}{\sin(x)} \cdot \frac{\sin \left(\frac{1}{x} \right)}{\frac{1}{x}} \]

\[= 1 \cdot 0 = 0 \]

Since \(\lim_{x \to 0} \frac{x}{\sin(x)} = 1 \) and \(\lim_{x \to 0} \frac{\sin(1/x)}{1/x} = 0 \),

\[\frac{x^2}{\sin(x)} \cdot \frac{\sin \left(\frac{1}{x} \right)}{\sin(x)} \leq \frac{x^2 \sin \left(\frac{1}{x} \right)}{\sin(x)} \leq \frac{x^2}{\sin(x)} \]

\[\Rightarrow \lim_{x \to 0} \frac{x^2 \sin \left(\frac{1}{x} \right)}{\sin(x)} = 0 \]

0 as \(x \to 0 \)
(12 pts) 2. Find an equation of the normal line to the curve \(x^3 + y^3 - 9xy = 0 \) at the point \((4, 2)\).

By implicit differentiation, we have

\[
3x^2 + 3y^2 y' - 9y - 9xy' = 0 \implies y' = \frac{3y - x^2}{y^2 - 3x}
\]

whenever it exists.

Then,

\[
y'(4, 2) = \frac{3(2) - 16}{4 - 12} = \frac{-10}{-8} = \frac{5}{4}
\]

a slope of tangent line through the point \((4, 2)\).

So, the slope of the normal line is \(-\frac{4}{5}\).

So, the eqn is

\[
y - 2 = -\frac{4}{5} (x - 4)
\]

(12 pts) 3. A point is moving to the right along the first-quadrant portion of the curve \(x^2y^3 = 72\). When the point has coordinates \((3, 2)\), its horizontal velocity is 2 units/second. What is the rate of change in the distance of the particle to the origin?

Let \(x = x(t)\) and \(y = y(t)\) be coordinate functions parameterized by time \(t\), so that \(x^2y^3 = 72\) and \(\frac{dx}{dt} \big|_{(3,2)} = 2\) units/sec.

Let \(D(t) = \sqrt{x^2 + y^2}\) be the distance of the particle to the origin. \(D > 0\).

We need to find \(\frac{dD}{dt} \big|_{(3,2)}\).

Differentiate \(x^2y^3 = 72\) wrt \(t\), then we have

\[
2xy^3\frac{dx}{dt} + 3x^2y^2\frac{dy}{dt} = 0 \implies \frac{dy}{dt} \bigg|_{(3,2)} = -\frac{8}{9}
\]

Differentiate \(D^2 = x^2 + y^2\) wrt \(t\), then we have

\[
2D \frac{dD}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt} \implies \frac{dD}{dt} \bigg|_{(3,2)} = D \frac{dD}{dt} \bigg|_{(3,2)} = 6 + \frac{-16}{9}
\]

So,

\[
\frac{dD}{dt} \bigg|_{(3,2)} = \frac{38}{9\sqrt{13}}
\]
4. Let \(f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x < 0, \\ 1 & \text{if } x = 0, \\ \cos(x) & \text{if } x > 0. \end{cases} \)

Is \(f \) continuous at \(x = 0 \)? Explain why or why not. If \(f'(0) \) exists, determine its value; if not, explain why it does not exist.

1. Need to check \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \).
 \[
 \lim_{x \to 0^-} \frac{\sin(x)}{x} = 1 = \lim_{x \to 0^+} \cos(x) = f(0)
 \]
 \(\Rightarrow \) \(f \) is cont. at \(x = 0 \).

2. Now, we need to check \(\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) \) exists or not.

 \[
 \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{\sin(x) - 1}{x} = \lim_{x \to 0^-} \frac{\sin(x) - x}{x^2} = \lim_{x \to 0^-} \frac{\sin(x) - x}{2x} = \lim_{x \to 0^-} \frac{-\sin(x)}{2x^2} = \lim_{x \to 0^-} \frac{-\sin(x)}{2} = 0
 \]

 \[
 \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\cos(x) - 1}{x} = \lim_{x \to 0^+} \frac{-\sin(x)}{x} = -1
 \]

 So, \(f'(0) \) exists and \(f'(0) = 0 \).

5. Prove that the function \(f(x) = x^3 + 5x + 2 \) has a unique zero in \(\mathbb{R} \).

Clearly \(f \) is cont. everywhere since it is polynomial.

In particular, \(f \) is also cont. on any interval \(I = [a, b] \subset \mathbb{R} \).

Take \(I = [-1, 0] \), then we also have \(f(0) = 2 > 0 \), \(f(-1) = -4 < 0 \).

By IVT, there is some \(c \in [-1, 0] \) so \(f(c) = 0 \).

So, \(f \) is at least one zero. \(\Box \) (take \(c \in (-1, 0) \))

Now, assume that \(f \) has more than one root, say \(c_1 \) and \(c_2 \).

Notice that \(f \) is clearly cont. on \([c_1, c_2] \) and differentiable on \((c_1, c_2) \) since it is polynomial. By Rolle’s thm, there exists some \(d \in (c_1, c_2) \) such that \(f'(d) = 0 \).

But, \(f'(x) = 3x^2 + 5 \) which has no real root. Therefore, assumption is false. i.e., \(f \) cannot have more than one root. \(\Box \)

By (1) and (2), it means \(f \) has exactly one zero.
(9+9+9 pts) 6.
(a) Find \(\frac{dy}{dx} \) if \(x^y = y^x \)

Take the logarithm of both sides: \(\ln x^y = \ln y^x \) \(\Rightarrow \) \(y \ln x = x \ln y \) \(\text{(A)} \)

Take the derivative of both sides of \(\text{(A)} \) wrt \(x \), then

\[
y' \ln x + y \cdot \frac{1}{x} = \ln y + x \cdot \frac{1}{y} \cdot y'
\]

\(\Rightarrow \)

\[
y' = \frac{\ln y - \frac{y}{x}}{\ln x - \frac{x}{y}}
\]

(b) Find \(\frac{dy}{dx} \) if \(y = \sinh(x)^{\ln x} \)

Take the log. of both sides: \(\ln y = \ln(\sinh(x)^{\ln x}) \)

Take the derivative of both sides wrt \(x \), then we have

\[
\frac{y'}{y} = \frac{1}{x} \ln(\sinh(x)) + \ln x \cdot \frac{\cosh(x)}{\sinh(x)}
\]

\(\Rightarrow \)

\[
y' = \left[\sinh(x) \right]^{\ln x} \left[\frac{\ln(\sinh(x))}{x} + \ln x \cdot \frac{\cosh(x)}{\sinh(x)} \right]
\]

(c) Find \(\frac{d}{dx} f^{-1}(1) \) where \(f(x) = x^5 + 6x^3 + x + 1 \).

Let \(f^{-1}(1) = a \), then we have \(f(a) = 1 \)

i.e. \(a^5 + 6a^3 + a + 1 = 1 \) \(\Rightarrow \) \(a = 0 \)

 Recall \((f^{-1})'(1) = \) \(\frac{1}{f'(f^{-1}(1))} \), so \((f^{-1})'(1) = \frac{1}{f'(0)} \)

Since \(f'(x) = 5x^4 + 18x^2 + 1 \) and \(f'(0) = 1 \), we have

\[
(f^{-1})'(1) = 1
\]