Chapter 4: More Applications of Differentiation

4.1 Related Rates
4.3 Indeterminate Forms

4.1 Related Rates

When two or more quantities that change with time are linked by an equation, that equation can be differentiated with respect to time to produce an equation linking the rates of change of the quantities.

How to solve related-rate problems

1. Understand the relation between the variable quantities. What is given? What is to be found?
2. Make a sketch if possible.
3. Define symbols to express given and required quantities and rates.
4. Identify one or more equations linking the variable quantities.
5. Differentiate the equations implicitly with respect to the time, regarding all variable quantities as a function of time.
6. Substitute any given values for the quantities and their rates, then solve the resulting equations for the unknown quantities and rates.

1. The area of a circle is decreasing at a rate of 2 cm²/min. How fast is the radius of the circle changing when the area is 100 cm²?

Solution:

The radius and the area of the circle are variable quantities and they can be expressed as functions of time.

\[R = R(t) \quad \text{radius of the circle} \]
\[A = A(t) \quad \text{area of the circle} \]

The relation between radius and area: \[A = \pi R^2 \]

So we have:

\[A(t) = \pi [R(t)]^2 \Rightarrow \frac{dA}{dt} = 2\pi R \frac{dR}{dt} \]

Differentiate with respect to \(t \):

\[\frac{dR}{dt} = \frac{1}{2} \left(\frac{1}{\pi} \frac{dA}{dt} \right) \]

\[\frac{dR}{dt} = \frac{1}{2} \frac{1}{\sqrt{100}} \left(\frac{dA}{dt} \right) \]

\[\frac{dR}{dt} = \frac{1}{2 \pi} \sqrt{100} \text{ cm/min} \]

The radius is decreasing at the rate \(\frac{1}{10\sqrt{\pi}} \) cm/min.
2. A point is moving to the right along the first quadrant portion of the curve \(x^2 + y^2 = 72\). When the point has coordinates \((3,2)\), its horizontal velocity is 2 units/s. What is its vertical velocity?

Solution:

\[
x^2 + y^2 = 72
\]

\[
(3,2)
\]

The equation of the curve can be written as \(x(t)^2 + y(t)^2 = 72\) and \(x = 3, y = 2, \frac{dx}{dt} = 2, \frac{dy}{dt} = ?\)

Differentiate the equation

\[
2x(t) \frac{dx}{dt} + 2y(t) \frac{dy}{dt} = 0
\]

\[
2.3. 2^3 + 3.2^2 \frac{dy}{dt} = 0 \Rightarrow \frac{dy}{dt} = -\frac{2.3}{2^2.3} = -\frac{8}{9} \text{ units/s}
\]

3. The cross section of a water trough is an equilateral triangle with top edge horizontal. If the trough is 10 m long and 30 cm deep, and water is flowing at a rate of 1/4 m³/min, how fast is the water level changing when the water is 20 cm deep at the deepest?

Solution:

The volume of water and the height of water are variable quantities, denoted by \(v = v(t), h = h(t)\).

The area of the cross section

\[
A(t) = \frac{\sqrt{3}}{2} h(t)^2
\]

The volume of the water:

\[
v(t) = 1, A(t) = 10, \frac{[h(t)]^2}{\sqrt{3}}
\]

\[
h = 0.2
\]

Differentiate the equation:

\[
\frac{dv}{dt} = \frac{10}{\sqrt{3}}, \frac{d}{dt} h(t) \frac{dh}{dt} \Rightarrow \frac{1}{4} = \frac{10}{\sqrt{3}} \times \frac{2}{16} \text{ dh} \Rightarrow \frac{dh}{dt} = \frac{15}{16}
\]
4. If a truck factory employs x workers and has daily operating expenses of y, it can produce $P = (\frac{4}{3}) x^{0.6} y^{0.4}$ trucks per year. How fast are the daily expenses decreasing when they are $\$10,000$ and the number of workers is 40, if the number of workers is increasing at 1 per day and production is remaining constant?

Solution:

We are given $x = 40$, $\frac{dx}{dt} = 1$, $y = 10,000$, $\frac{dy}{dt} = 0$.

Observe that since the production is constant, $\frac{dP}{dt} = 0$.

Differentiate $P = \frac{4}{3} x^{0.6} y^{0.4}$ with respect to t:

$$\frac{dP}{dt} = \frac{4}{3} \cdot 0.6 x^{-0.4} \frac{dx}{dt} y^{0.4} + \frac{4}{3} x^{0.6} y^{-0.6} \frac{dy}{dt}$$

Replace $\frac{dx}{dt} = 1$, $\frac{dy}{dt} = 0$, $x = 40$, $y = 10,000$:

$$0 = \frac{4}{3} \cdot 0.6 \cdot 40^{-0.4} \cdot 10,000^{0.4} + \frac{4}{3} \cdot 40^{0.6} \cdot 10,000^{-0.6} \frac{dy}{dx}$$

Solve for $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{\frac{4}{3} \cdot 0.6 \cdot 40^{-0.4} \cdot 10,000^{0.4}}{\frac{4}{3} \cdot 40^{0.6} \cdot 10,000^{-0.6}} = -3.75$$

4.3 Indeterminate Forms

Types of Indeterminate Forms: $0 \cdot \infty$, $\frac{\infty}{\infty}$, $0 \cdot 0$, $\infty - \infty$, 0^{0}, ∞^{0}, 1^{∞}

The First L'Hopital Rule: Suppose the functions f and g are differentiable on the interval (a, b) and $g'(x) \neq 0$. Suppose also that

(i) $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$

(ii) $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$ (where L is finite, ∞ or $-\infty$)

Then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$

($x \to a^+$ can be replaced by $x \to b^-$, $a = \infty$ or $b = -\infty$ are allowed)

The Second L'Hopital Rule: Suppose that f and g are differentiable on (a, b), $g'(x) \neq 0$ Suppose also that

$$\lim_{x \to a^+} g(x) = \pm \infty \quad \text{and} \quad \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L \quad (L \text{ is finite, } \infty \text{ or } -\infty)$$

Then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$

($x \to a^+$, $x \to b^-$, $x \to \infty$, $a = \infty$, $b = -\infty$)
5. Evaluate the following limits.

(a) \(\lim_{x \to 1} \frac{x^\pi - 1}{x - 1} \)

(b) \(\lim_{x \to 0} \frac{x - \sin x}{x - \tan x} \)

(c) \(\lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x^2)} \)

(d) \(\lim_{x \to 0^+} \left[\ln \left(\frac{1}{x} \right)^x \right] \)

(e) \(\lim_{x \to \infty} \left(e^x + x \right) ^{\frac{1}{x}} \)

(f) \(\lim_{x \to \infty} \left[x \cdot \sin \left(\frac{1}{x} \right) \right] \)

(g) \(\lim_{x \to 1^+} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right) \)

(h) \(\lim_{x \to \infty} \left[x \cdot \left(2 \arctan x - \frac{\pi}{2} \right) \right] \)

(i) \(\lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{x} e^{x} \right] \)

Solution:

(a) \(\lim_{x \to 1} \frac{x^\pi - 1}{x - 1} \) \[\text{[0/0 type]} \] Apply L'Hopital Rule

\[\lim_{x \to 1} \frac{x^\pi - 1}{x - 1} = \lim_{x \to 1} \frac{\pi x^{\pi - 1}}{1} = \frac{\pi}{1} \]

Thus, \(\lim_{x \to 1} \frac{x^\pi - 1}{x - 1} = \frac{\pi}{1} \)

(b) \(\lim_{x \to 0} \frac{x - \sin x}{x - \tan x} \) \[\text{[0/0 type]} \] Apply L'Hopital Rule

\[\lim_{x \to 0} \frac{x - \sin x}{x - \tan x} = \lim_{x \to 0} \frac{1 - \cos x}{1 - \sec^2 x} \]

\[= \lim_{x \to 0} \frac{1 - \cos x}{1 - \frac{1}{\cos^2 x}} \]

\[= \lim_{x \to 0} \frac{\cos^2 x (1 - \cos x)}{(\cos x - 1)(\cos x + 1)} \]

\[= \lim_{x \to 0} \frac{-\cos^2 x}{\cos x + 1} = -\frac{1}{2} \]

Thus, \(\lim_{x \to 0} \frac{x - \sin x}{x - \tan x} = -\frac{1}{2} \)

(c) \(\lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x^2)} \) \[\text{[0/0 type]} \] Apply L'Hopital Rule

\[\lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x^2)} = \lim_{x \to 0} \frac{\sin x}{2x} \]

\[= \frac{1}{2} \lim_{x \to 0} \frac{(1 + x^2) \sin x}{2x} \]

Since both limits exist.

\[= \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2} \]

Thus, \(\lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x^2)} = \frac{1}{2} \)
(d) \[\lim_{x \to 0^+} \ln \left(\frac{1}{x} \right)^x = \lim_{x \to 0^+} \left[x \cdot \ln \left(\frac{1}{x} \right) \right] \quad [0, \infty \text{ type}] \]

\[= \lim_{x \to 0^+} \frac{\ln \left(\frac{1}{x} \right)}{\frac{1}{x}} \quad \left[\frac{\infty}{\infty} \text{ type} \right] \quad \text{Apply L'Hôpital's Rule} \]

\[\text{L'H} \lim_{x \to 0^+} x \cdot \left(-\frac{1}{x^2} \right) = 0 \]

Thus, \[\lim_{x \to 0^+} \left[\ln \left(\frac{1}{x} \right)^x \right] = 0 \]

(e) \[\lim_{x \to \infty} \left(e^x + x \right)^{1/x} \quad [\infty^0 \text{ type}] \]

Take the natural logarithm of \(y = (e^x + x)^{1/x} \):

\[\ln y = \ln \left(e^x + x \right)^{1/x} = \frac{1}{x} \ln (e^x + x) \]

Then, \[\lim_{x \to \infty} (\ln y) = \lim_{x \to \infty} \left[\frac{\ln (e^x + x)}{x} \right] \quad \left[\frac{\infty}{\infty} \text{ type} \right] \quad \text{Apply L'Hôpital's Rule} \]

\[\text{L'H} \lim_{x \to \infty} \frac{e^x + 1}{e^x + x} = \lim_{x \to \infty} \frac{e^x}{e^x + x} \quad \left[\frac{\infty}{\infty} \text{ type} \right] \quad \text{Apply L'Hôpital's Rule} \]

\[= \lim_{x \to \infty} \frac{e^x}{e^x + 1} = \lim_{x \to \infty} \frac{e^x}{e^x \left(1 + \frac{1}{e^x} \right)} = 1 \]

Thus, \[\lim_{x \to \infty} (\ln y) = \ln \left[\lim_{x \to \infty} y \right] = 1 \quad \Rightarrow \quad \lim_{x \to \infty} y = e^1 = e \]

Since \(f(x) = \ln x \) is continuous.

Therefore, \[\lim_{x \to \infty} \left(e^x + x \right)^{1/x} = e \]

(f) \[\lim_{x \to \infty} \left[x \sin \left(\frac{1}{x} \right) \right] \quad [\infty, 0 \text{ type}] \]

\[\lim_{x \to \infty} \left[x \cdot \sin \left(\frac{1}{x} \right) \right] = \lim_{x \to \infty} \frac{\sin \left(\frac{1}{x} \right)}{\frac{1}{x}} \quad \left[\frac{\infty}{0} \text{ type} \right] \quad \text{Apply L'Hôpital's Rule} \]

\[\text{L'H} \lim_{x \to \infty} \cos \left(\frac{1}{x} \right) \left(-\frac{1}{x^2} \right) = \cos 0 = 1 \]

Thus, \[\lim_{x \to \infty} \left[x \cdot \sin \left(\frac{1}{x} \right) \right] = 1 \]
\[(g) \lim_{x \to 1^+} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right] \quad [\infty - \infty \text{type}] \]

\[\lim_{x \to 1^+} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right] = \lim_{x \to 1^+} \frac{x \ln x - x + 1}{(x-1) \ln x} \quad [\frac{0}{0} \text{type}] \]

\[\operatorname{L'Hopital's \: Rule} \lim_{x \to 1^+} \frac{\ln x + x - 1}{\ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1^+} \frac{\ln x}{\ln x + 1 - \frac{1}{x}} \quad [\frac{0}{0} \text{type}] \]

\[\operatorname{L'Hopital's \: Rule} \lim_{x \to 1^+} \frac{1}{x} = \lim_{x \to 1^+} \frac{x}{x+1} = \frac{1}{2} \]

Thus, \[\lim_{x \to 1^+} \left[\frac{x}{x-1} - \frac{1}{\ln x} \right] = \frac{1}{2} \]

\[(h) \lim_{x \to \infty} \left[x \cdot (2 \arctan x - \pi) \right] \quad [\infty 0 \text{type}] \]

\[\lim_{x \to \infty} \left[x \cdot (2 \arctan x - \pi) \right] = \lim_{x \to \infty} \frac{2 \arctan x - \pi}{\frac{1}{x}} \quad [\frac{0}{0} \text{type}] \]

\[\operatorname{L'Hopital's \: Rule} \lim_{x \to \infty} \frac{4}{1 + x^2} = \lim_{x \to \infty} \left(-2 \frac{x^2}{1 + x^2} \right) \]

\[= \lim_{x \to \infty} \left(-2 \frac{x^2}{x^2 + 1} \right) = -2 \]

Therefore, \[\lim_{x \to \infty} \left[x \cdot (2 \arctan x - \pi) \right] = -2 \]

\[(i) \lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{xe^x} \right] \quad [\infty - \infty \text{type}] \]

\[\lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{xe^x} \right] = \lim_{x \to 0} \frac{e - 1}{xe^x} \quad [\frac{0}{0} \text{type}] \]

\[\operatorname{L'Hopital's \: Rule} \lim_{x \to 0} \frac{ae}{ae + x \cdot ae} = a \]

Thus, \[\lim_{x \to 0} \left[\frac{1}{x} - \frac{1}{xe^x} \right] = a \]